
Matter-wave solitons in radially periodic potentials

Bakhtiyor B. Baizakov,1 Boris A. Malomed,2 and Mario Salerno3

1Physical-Technical Institute of the Uzbek Academy of Sciences, 2-b, G. Mavlyanov Strasse, 700084, Tashkent, Uzbekistan
2Department of Interdisciplinary Studies, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978,

Israel
3Dipartimento di Fisica “E. R. Caianiello,” Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM),

Universitá di Salerno, I-84081, Baronissi, Salerno, Italy
�Received 6 May 2006; revised manuscript received 16 August 2006; published 29 December 2006�

We investigate two-dimensional �2D� states in Bose-Einstein condensates with self-attraction or self-
repulsion, trapped in an axially symmetric optical-lattice potential periodic along the radius. The states trapped
both in the central potential well and in remote circular troughs are studied. In the repulsive mode, a new
soliton species is found, in the form of radial gap solitons. The latter solitons are completely stable if they carry
zero vorticity �l=0�, while with l�0 they develop a weak azimuthal modulation, which makes them rotating
patterns, that persist indefinitely long. In addition, annular gap solitons may support stable azimuthal dark-
soliton pairs on their crests. In remote troughs of the attractive model, stable localized states may assume a
ringlike shape with weak azimuthal modulation, or shrink into solitons strongly localized in the azimuthal
direction, which is explained in the framework of an averaged 1D equation with the cyclic azimuthal coordi-
nate. Numerical simulations of the attractive model also reveal stable necklacelike patterns, built of several
strongly localized peaks. Dynamics of strongly localized solitons circulating in the troughs is studied too.
While the solitons with sufficiently small velocities are completely stable, fast solitons gradually decay, due to
the leakage of matter into the adjacent trough, under the action of the centrifugal force. Investigation of
head-on collisions between strongly localized solitons traveling in circular troughs shows that collisions be-
tween in-phase solitons in a common trough lead to collapse, while �-out-of-phase solitons bounce many
times, but eventually merge into a single one, without collapsing. In-phase solitons colliding in adjacent
circular troughs also tend to merge into a single soliton.
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I. INTRODUCTION

Matter-wave solitons, that can be created in Bose-Einstein
condensates �BECs�, are a research subject of great interest,
both as nonlinear collective excitations in macroscopic quan-
tum matter, and due to the potential they offer in applications
to high-precision interferometry, matter-wave lasers, quan-
tum information processing, and other emerging technolo-
gies. Dark and bright matter-wave solitons were experimen-
tally created in nearly one-dimensional �1D� traps filled with
87Rb �1� and 7Li �2,3� condensate, respectively. In these set-
tings, strong radial confinement freezes transverse dynamics
of the condensate, keeping atoms �with mass m� in the
ground state of the corresponding 2D harmonic-oscillator po-
tential m��

2 r2 /2, while a weak axial parabolic trap m��
2x2 /2

allows quasifree motion of the soliton in the axial direction x.
New recent experiments with 85Rb �4� and related numerical
simulations �5� have showed the existence of stable solitary
waves, supported by attraction between atoms, in a weakly
elongated ��� /�x�2.5� trap. These essentially three-
dimensional �3D� bright solitons exhibit complex behavior,
not observed in their nearly 1D counterparts. Notable among
the new features are inelastic collisions between solitons,
which are strongly sensitive to phase relations between them
and their relative speed. An effective 1D Gross-Pitaevskii
equation �GPE� including a quintic self-attraction term,
which represents deviation from the one dimensionality,
makes it possible to explain some of these features �6�.

Adding a periodic optical-lattice �OL� potential in the
axial direction of the quasi-1D trap makes it possible to cre-

ate bright matter-wave solitons of the gap type in repulsive
condensates �7�. It is a spectacular manifestation of rich
dynamics of BEC trapped in OLs, as reviewed in Refs. �8�.

Recently, analysis of 2D and 3D localized states in the
GPE, that may be stabilized by cellular potentials, i.e., mul-
tidimensional OLs, has attracted a great deal of interest, see
Ref. �9�. Creation of multidimensional matter-wave solitons
is a great challenge to the experiment, as well as the making
of spatiotemporal solitons in nonlinear optics �9�. In particu-
lar, stable multi-dimensional solitons trapped in a low-
dimensional OL �i.e., 1D lattice in the 2D space �10�, and 2D
lattice in the 3D space �10,11��, have been predicted �10�. As
these solitons keep their mobility in the free direction, such
settings may be used to test head-on and tangential collisions
between solitons. Note that the quasi-1D lattice potential
cannot stabilize 3D solitons �10� �this becomes possible if
the quasi-1D lattice is combined with the periodic time
modulation of the nonlinearity provided by the Feshbach-
resonance-management technique �12�; a general account of
the technique of periodic management for solitons was given
in Ref. �13��.

A low-dimensional OL can also be implemented as a ra-
dial �axisymmetric� lattice in both 2D �14–20� and 3D �21�
settings. In both cases, stable solitons in the self-attractive
medium were predicted, in the form of a spot trapped either
at the central potential well, or �in the 2D case� in a radial
potential trough �additionally, the so-called azimuthons were
predicted as azimuthally periodic deformations of vortices in
the uniform 2D medium �22�; however, they are unstable in
the case of the cubic nonlinearity�. The spot-shaped soliton
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may run at a constant angular velocity in the trough, thus
being a rotary soliton �14�. The radial-lattice setting may be
more convenient for the experimental study of mobility and
collisions of matter-wave solitons than the cigar-shaped traps
�2,3,5�, as in the circular geometry the motion is not affected
by the finite size of the longitudinal trap. The radial setting is
also appropriate to support patterns in self-repulsive BECs.
In particular, dark solitons were created in cigar-shaped traps
�1�, where the background density is essentially nonuniform,
as it vanishes at edges of the trap. In a circular trough, pairs
of dark solitons can be created without this complication. In
fact, both axisymmetric �azimuthally uniform� vortices �15�
and dipole and quadrupole states, that may be regarded as
stable complexes of two or four dark solitons �16�, were
predicted in the two-dimensional GPE with the repulsive
nonlinearity and Bessel-lattice radial potential. The stable di-
pole and quadrupole patterns may also rotate at a constant
angular velocity �16�.

The aim of this paper is to investigate the existence of
localized states in the 2D Gross-Pitaevskii equation with the
radially periodic OL potential, −� cos�2kr�. In particular, we
will show the existence of solitons of the ordinary type in the
model with self-attraction, and of radial gap solitons �a new
species of solitary waves�, in the case of self-repulsion. All
localized states reported in this paper have no counterparts in
the respective linear equation, being thus different from the
above-mentioned solitons in Bessel lattices, which can be
obtained by continuation of localized states existing in the
linear limit �except for the rotary and 3D solitons�. In
particular, solitons of the gap type cannot exist in the Bessel-
lattice potential, which vanishes at r→�.

In addition to the BEC context considered in this paper,
similar solitons may also exist in photonic-crystal fibers with
a concentric �rather than usual hexagonal� structure, similar
to that in fibers with multilayer claddings �23�. In that case,
the soliton will be represented by the transverse structure of
a self-trapped beam propagating in the fiber.

The paper is organized as follows. In Sec. II we formulate
the model based on the two-dimensional GPE. Section III is
dealing with solitons trapped in the center �including radial
gap solitons, in the case of the repulsive model�. In this case,
results are obtained in direct simulations, and by means of
the variational approximation �VA�, both static and dynami-
cal variants of the VA being presented. All subsequent sec-
tions deal with annular solitons, which are trapped in ring
channels �potential troughs� at a finite distance from the cen-
ter. Section IV presents approximate analytical results for
annular solitons in the attractive model. By means of the VA,
we derive an effective 1D equation, which predicts onset of
instability of the axisymmetric ring-shaped states against azi-
muthal modulations. Exact modulated �cnoidal-wave� solu-
tions, which appear above the instability threshold of the
axisymmetric state, are found too, as well as exact solutions
for azimuthal solitons. Section V addresses the most intrigu-
ing issue considered in this work, viz., radial gap solitons �in
both cases of attraction and repulsion�, with the central lobe
trapped in a circular trough. Various types of such solitons
are found by means of numerical methods, and it is demon-
strated that exactly one of them may be stable, namely,
solitons in the repulsive model, which are approximately

symmetric about their center in the radial direction. With
zero angular momentum �l=0�, such solitons are completely
stable; if l�0, the corresponding vortex radial solitons de-
velop small-amplitude rotating azimuthal modulations, and
persists indefinitely long in this rotational state. Numerical
analysis of radial solitons is further developed in Sec. VI. In
particular, the existence of stable annular states with a sta-
tionary azimuthal modulation is demonstrated in the attrac-
tive model and, in a more general case, it is found that the
development of the azimuthal instability of axisymmetric an-
nular solitons in the same model leads to establishment of
necklace-shaped patterns consisting of strongly localized
�spot-shaped� solitons. Also presented in Sec. VI are stable
ring-shaped gap solitons of a large radius in the repulsive
model, which carry a pair of dark azimuthal solitons on their
crests. Section VII addresses the dynamics of strongly local-
ized solitons moving in circular troughs in the attractive
model. It is shown that slowly moving solitons are stable,
while fast ones are destroyed due to leakage of matter into
the outer trough, under the action of the centrifugal force.
Head-on collisions between the moving in-phase solitons in
a circular trough lead to collapse �intrinsic blow-up�, while
�-out-of-phase solitons collide many times, and eventually
merge into a single soliton �without loss but collapse�; the
same happens to in-phase solitons colliding tangentially, if
they are trapped in adjacent troughs. Section VIII concludes
the paper.

II. THE MODEL

The starting point is the standard GPE in its normalized
2D form �8,13�

i
�u

�t
= − � �2

�r2 +
1

r

�

�r
+

1

r2

�2

��2�u + V�r�u − �	u	2u = 0,

�1�

written for the single-atom wave function u in polar coordi-
nates �r ,��. Here, �= +1 and −1 correspond to the self-
focusing and defocusing nonlinearity, respectively �alias
negative and positive scattering length of interatomic
collisions� and, as said above,

V�r� = − � cos�2kr� �2�

is the radially periodic potential; by dint of obvious rescal-
ing, we set k
1. In terms of OLs, this potential can be
created by a cylindrical beam whose amplitude is modulated
as cos�kr� �see further discussion below�. Note that ��0
corresponds to a potential minimum at r=0, see an example
in Fig. 1 �below, negative values of � will also be considered,
for radial gap solitons in the model with repulsion, �=−1�.
Equation �1� can be derived from the following Lagrangian
�with an asterisk standing for the complex conjugate�:

L = �
0
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rdr�
0
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Stationary axisymmetric states with chemical potential �
are looked for as solutions to Eq. �1� in the form of
u=U�r�e−i�t, with a real function U obeying the equation

�U + � d2

dr2 +
1

r

d

dr
�U − V�r�U + �U3 = 0. �4�

For given potential V�r�, solutions to Eq. �4� form families
parameterized by � or, alternatively, by the norm

N = 2��
0

�

�U�r��2rdr 
 N = 2��
0

�

	u	2rdr . �5�

Solutions to stationary equation �4� with �= +1 �self-
attraction� were obtained by means of a recently developed
spectral-renormalization method for finding self-localized
states of nonlinear-Schrödinger �NLS� type equations �24�.
Independently, the same stationary solutions were also gen-
erated by dint of the well-known method which uses the
integration of GPE �1� in imaginary time �25�. Stability of
the solitary waves was then tested by adding small perturba-
tions to them and integrating the GPE in real time. A stable
perturbed soliton would shed off some radiation, which was
absorbed at boundaries of the integration domain, and relax
into a slightly different stationary form, corresponding to a
smaller norm.

In the case of repulsion ��=−1�, self-localized states were
obtained by means of a different numerical technique. In this
case, Eq. �1� was solved in real time, with an absorber placed
at the boundary of the integration domain. A localized wave-
form �e.g., Gaussian� with a suitable norm was chosen as the
initial condition. In the course of the evolution, excess norm
is radiated away with linear waves, which are absorbed at the
boundary, and a self-localized state emerges �see the example
in Fig. 4 below�. It is obvious that solitons found this way
are stable.

The abovementioned radial lattices of the Bessel type can
be naturally generated by a nondiffracting linear optical
beam with the cylindrical symmetry �Bessel beams them-
selves are usually generated by means of axicoms� �26�. On
the other hand, the radial potential of the form of cos�2kr�
can be induced, as said above, by a cylindrical beam whose
amplitude is modulated as cos�kr�. The modulation can be
provided by passing the cylindrical laser beam through a
properly shaped plate �19,20�. Unlike the Bessel beam, one
with the cos�kr� transverse modulation will suffer conical

diffraction, but it is not a problem for BEC experiments, as a
tight optical trap created in the transverse direction may
readily confine a 2D pancake-shaped configuration of the
condensate, with thicknesses as small as 2 �m �27�. The
diffraction of the paraxial beam, with waist diameter
D�100 �m, which is a value relevant to the experiment, on
such a short propagation distance is completely negligible, as
the respective diffraction length �alias Rayleigh range� is es-
timated to be zdiffr�D2 /	�10 mm, where 	�1 �m is the
beam’s carrier wavelength.

III. SOLITONS TRAPPED AT THE CENTER

A. Numerical solutions

It is known that a radial potential structure can easily trap
a soliton in the central potential well �14�. We start the study
of the present model by considering solutions of this type;
ring-shaped states, trapped in circular potential troughs at a
finite distance from the center, will be considered in subse-
quent sections. Typical examples of the respective solitonic
shape in the model with self-attraction ��= +1� are displayed
in Fig. 2. In the repulsive model ��=−1�, numerical solutions
were obtained, as said above, by solving Eq. �1� in real time,
in the presence of the boundary absorber. An example of the
relaxation of an initial Gaussian pulse into a stable soliton is
given in Fig. 3. Full views of the typical stable solitons
trapped at the center of the radial structure in the model with
self-attraction and self-repulsion are displayed in Fig. 4.

As far as the solitons in the repulsive model ��=−1� are
concerned, a typical example of which is displayed in the
lower panel of Fig. 4, they may be clearly classified as soli-
tons of the gap type, since they exist solely due to the inter-
play of the lattice potential and self-defocusing nonlinearity.
The ordinary setting that gives rise to gap solitons is quite
similar, with the OL in the 1D, 2D, or 3D Cartesian coordi-
nates �28�. Slowly decaying fringes, attached to the central
core of the soliton and evident in the lower panel of Fig. 4
�absent in the ordinary soliton displayed in the upper panel�,
is a characteristic feature of gap solitons. Thus, this state,
self-trapped around the center, may be naturally called a
“radial gap soliton.”

FIG. 1. An example of the radially periodic axisymmetric po-
tential V�r�=−cos�2r�. FIG. 2. Axial cross sections of two stable solitons with equal

chemical potentials �=−0.5 trapped �in the model with self-
attraction� at the center of the radial structure V�r�=� cos�2r� with
�=1.5 �solid line; in this case, the norm is N=8.9� and �=0.5
�dashed line, corresponding to N=10.1�.
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B. Variational approximation

To describe a stationary soliton trapped in the central po-
tential well in an analytical approximation, we adopt the
Gaussian ansatz

U�r� = A exp�−
r2

2a2� . �6�

Comparison with Fig. 2 shows that, in the model with attrac-
tion ��= +1�, this ansatz is quite adequate for solitons with a
larger norm, trapped in a relatively weak lattice, but it may
be inaccurate as an approximation for solitons with smaller
N, trapped in a stronger lattice.

The application of the variational approximation �VA� to
stationary equation �4�, with the accordingly modified La-
grangian �3�, is straightforward �see Refs. �10,29,30�, where
the same Gaussian ansatz was used to predict 2D solitons
trapped in quasi-1D and square 2D OLs�. Thus we arrive at
VA-generated equations, that relate the soliton’s size a to its
norm and chemical potential

�N

4�
= 1 −

1

2
�a3 df

da
, � = ��a

df

da
+ f�a�� −

1

a2 , �7�

where f�a�=1−��ae−a2
erfi�a�, erfi�a�
erf�ia� / i is a real

function, and erf is the standard error function.
The analysis of dependence �=��N� following from Eqs.

�7� with �= +1 �self-focusing� predicts the existence of a
family of solitons trapped at the center of the radial lattice,
which are stable according to the Vakhitov-Kolokolov �VK�
stability criterion �31,32�, d� /dN
0, as shown in Fig. 5.
Although the VK criterion is only necessary for the stability,
as it ignores a possibility of oscillatory instability with com-
plex eigenvalues, direct simulations of Eq. �1� confirm the
stability of these solutions �see below�.

Additional evidence for the existence of self-trapped lo-
calized states of BEC in the present model can be provided
by a more general, time-dependent, version of the VA. To
this end, we define a generalized ansatz �see Eq. �6��

u�r,t� = A�t�exp�−
r2

2�a�t��2 +
i

2
b�t�r2 + i��t�� , �8�

where b is a real radial chirp, and � is the overall phase.
Applying the standard VA procedure �33�, one arrives at the
following evolution equation for the width of the localized
state:

d2a

dt2 =
4�1 − ���

a3 + 2��2a + ���1 − 2a2�e−a2
erfi�a�� , �9�

where an effective nonlinearity strength is

�� 
 �N/�4�� , �10�

and the amplitude of ansatz �8� is given by

FIG. 3. Formation of a self-trapped state �radial gap soliton� in
repulsive BEC around the center of the radial lattice with strength
�=3 �in the presence of absorbers at the boundary of the integration
domain� from an initial Gaussian with norm N=6�. The norm of
the eventually established state is N=5.63, i.e., �30% of the initial
value.

FIG. 4. �Color online� Upper panel: The same localized state in
the attractive BEC whose axial cross section is shown by the solid
curve in Fig. 2 �with N=8.9, �=−0.5, and �=1.5�. Lower panel:
The localized state in the repulsive BEC, with N=5.63, �=1.88,
amplitude A=1.358, and �=3, which was generated as shown in
Fig. 3.

FIG. 5. Dependences �=��N� following from variational equa-
tions �7�, for the self-attraction case �= +1. According to the VK
criterion d� /dN
0, stable solutions correspond to upper branches
of the curves.
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A2�t� = N/��a2�t�� . �11�

Equation �9� describes motion of a unit-mass particle with
coordinate a�t� in the effective potential

U�a� =
2�1 − ���

a2 − 2���ae−a2
erfi�a� . �12�

In Fig. 6 the effective potential �12� is depicted for different
values of ��, for the attractive and repulsive versions of the
model.

Solitons in the attractive BEC ��= +1� exist when poten-
tial �12� possesses a local minimum. In particular, for �
=0.5 �see Fig. 6�, the potential minimum exists provided that
���0.45. For the norm smaller than that corresponding to
��=0.45 �see Eq. �10��, the self-attraction is too weak to
form a soliton, and the matter-wave pulse spreads out
through barriers of the radial potential. On the other hand, in
the case of attraction, �� is also limited from above, by the
collapse occurring at a critical value, �cr� =Ncr / �4��. In the
absence of the lattice ��=0�, a numerically found critical
norm is Ncr

�0��11.7 �it is equal to the norm of the Townes
soliton� �32�. For any �, the VA predicts �cr� =1, as the value
of coefficient �� at which the first term in effective potential
�12� vanishes. According to Eq. �10�, this gives Ncr

�var�=4�
�34�, to be compared to the above-mentioned numerical
value 11.7.

Thus, the VA predicts a finite existence region for stable
localized states self-trapped at the center of the radial lattice
in the attractive BEC; for example, it is 0.45
��
1 for
�=0.5. While the upper edge of this region is fixed, as said
above, at N=Ncr

�var�=4�, numerical analysis of expression
�12� demonstrates that the lower critical norm necessary for
the existence of the self-trapped state, as predicted by the
VA, almost linearly decreases with the increase of the OL
strength �. Numerical solution of the axisymmetric version
of GPE �1� demonstrates that, although the collapse sets in at

FIG. 7. Comparison of a result of the variational approximation
�VA� with direct simulations of Eq. �1� �GPE� with �= +1 �the
attractive model�, in terms of the soliton’s amplitude as a function
of time. Intrinsic vibrations of the soliton were triggered by sudden
increase of the lattice strength from �=0.5 to �=0.75, for the state
self-trapped around the center, with N=10.1 in Fig. 2.

FIG. 8. Upper panel: Energy levels �eigenvalues of chemical
potential �� found from full nonlinear equation �33� with �= +1
�attraction� for l=10 and �=−10 ��
0 means the presence of a
potential maximum at r=0�. Lower panel: The same, but for the
repulsive model �=−1, with l=2 and �=4.

FIG. 6. The variational potential, as given by Eq. �12� for dif-
ferent values of ��=�N / �4��, at fixed strength � of the radial
optical lattice.
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a critical value of the norm which, in the presence of the
radial OL, is slightly higher than Ncr

�var�=4�, similar to the
case of the 2D soliton stabilized by the quasi-1D or square
OL �10,29,30�, the dependence of Ncr on � is weak. The
physical mechanism behind the rise of the collapse threshold
in a trapping potential is that the confinement allows the
soliton to increase the internal “quantum pressure,” gener-
ated by the dispersion term in GPE �1�, which counteracts
the nonlinear self-focusing of the wave packet.

Predictions of the VA for dynamical regimes can be com-
pared to direct simulations in terms of the time dependence
of the amplitude, A�t�, in a solution which was excited by a
sudden perturbation �the variational prediction for A�t� is
taken as per Eq. �11��. To display an example, we take the
stationary solution from Fig. 2, corresponding to �=0.5 and
N=10.1, and suddenly increase the lattice strength to �
=0.75. Comparison of the variational results with simula-
tions of Eq. �1� is presented in Fig. 7. It is observed that
the agreement for absolute values of the amplitude is only
qualitative, while the oscillation frequencies coincide better.

In the case of the repulsive BEC ��=−1�, the behavior is
opposite, as seen in the right panel of Fig. 6. In this case, a
larger norm for given OL strength � causes spreading of the
localized state, because the self-defocusing nonlinearity
overcomes the confining effect of the trapping potential.
Simulations of Eq. �1� with �=−1 show that the wave packet
sheds off excessive norm in the form of linear waves, which
are absorbed at domain boundaries, and relaxes into a stable
shape after the norm becomes appropriate. For example, at
�=2 stable localized states in the repulsive BEC exist at

	�� 	 �1 �i.e., the norm is limited to values N �4�, see Eq.
�10��.

IV. RING-SHAPED SOLITONS: AN ANALYTICAL
APPROACH

A. Variational approximation

An essential property of radially periodic potentials is that
localized states can self-trap not only in the central potential
well, but also in remote circular troughs �14,16�. These lo-
calized states are the subject of the consideration in the rest
of the paper. If the trough’s curvature is small, then states
resemble 2D solitons in the quasi-1D OL reported in Ref.
�10�. First, we aim to derive an asymptotic 1D equation for
patterns trapped in a circular trough, and obtain its relevant
solutions. To this end, we adopt the following ansatz for the
solution:

�r,�,t� = �2A�y,t�sech�x/�� , �13�

where y
r0� is the coordinate running along the circumfer-
ence of radius r0, A�y , t� is a slowly varying complex ampli-
tude, and the transverse variable is x
r−�m, with r0
�m
being a radial potential minimum in a vicinity of which the
ring-shaped pattern is trapped. Assuming that m is large
enough, we consider the annular pattern placed in a remote
circular trough, which may be treated as a quasi-rectilinear
potential trap, with negligible curvature. Obviously, the latter
condition amounts to ��r0 �recall � is the radial size in
ansatz �13��.

FIG. 9. �a�, �b� Radial �annu-
lar� gap solitons �thick lines�,
trapped in the circular trough of
the potential around r=1.5�, in
the attractive model ��= +1�. The
solitons correspond, respectively,
to eigenvalues of chemical poten-
tial � marked by “a” and “b” in
the left panel of Fig. 8, which are
�a=−2.1277 and �b=6.0543.
Panels �c� and �d� display radial
gap solitons in the repulsive
model ��=−1�, trapped in the cir-
cular trough of the potential
around r=�. These solitons ap-
pertain, respectively, to eigenval-
ues “c” and “d” marked in the
right panel of Fig. 8, �c=
−0.07359 and �d=4.09066. All
solitons shown in this figure have
norm N=10�. Thin lines depict
the radial potential proper
−� cos�2r� scaled by a factor of
50 in �a�, �b�, and by 20 in �c�, �d�.
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FIG. 10. �Color online� Left and right top panels: 3D view of the annular gap solitons corresponding to bound states �a� and �b�,
respectively, of Fig. 9. Left and right bottom panels: The same for bound states �c� and �d� from Fig. 9.

FIG. 11. Time evolution of the density
	u�x ,y , t�	2 in cross section y=0, obtained from
simulations of Eq. �31� with initial conditions
taken as slightly perturbed localized states from
panels �a�–�d� of Fig. 9. Parameters are the same
as in the respective panels of Fig. 8. Panels �a�,
�b�, and �d�, which pertain, respectively, to the
attractive and repulsive models, represent un-
stable types of annular gap solitons. On the con-
trary, in panel �c� the gap soliton of the onsite
symmetric type �in terms of its radial structure�,
with angular momentum l=2, remains, as a mat-
ter of fact, stable in the repulsive model, just de-
veloping a small azimuthal modulation which
travels along its crest, making the entire pattern
rotating. The rotation manifests itself through un-
equal and varying in time heights of the two
humps and spacings between them.
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Neglecting the curvature in Eq. �1�, we rewrite it as a 2D
equation with x and y treated as local Cartesian coordinates

i
�

�t
+

�2

�x2 +
�2

�y2 + �		2 + � cos�2x� = 0. �14�

The next step is to reduce Eq. �14� to an effectively 1D
equation along azimuthal direction y. To this end, we note
that Eq. �14� can be derived from the Lagrangian �see Eq.
�3��

L =� � dxdy� i

2
�t

* − t
*� − �	x	2 + 	y	2� +

1

2
�		4

+ � cos�2x�		2� .

We substitute ansatz �13� in this Lagrangian, and integrate
the resulting expression in transverse direction x, which
yields an effective �averaged� Lagrangian

Leff = 2�
−�

+�

dy�i��AtA
* − AAt

*� − 2�	Ay	2 − 2I
�y

2

�
	A	2��

−
2	A	2

3�
+

4

3
��	A	4 +

2���2	A	2

sinh���� � , �15�

where I
�0
+��sech2x−sech4x�x2dx�0.61.

The application of the standard variational procedure to
averaged Lagrangian �15� gives rise to a cumbersome system
of coupled equations for the complex amplitude A�y , t� and
real width ��y , t�. The equations strongly simply if we as-
sume that A and � are slowly varying functions of y, that, in
particular, corresponds to long-wave perturbations which
account for the onset of the modulational instability �MI�,
see below. Further, in the attractive model ��= +1�, one may
first look for a stationary solution, completely neglecting the
y dependence and assuming time independent 	A	 and �.

These assumptions give rise to a result previously known
from the application of the VA to the 1D NLS equation with
potential cos�2kx� �35�,

	A	 =� 1

�2 −
3

2
������

cosh����
sinh2����

−
1

sinh����� . �16�

This relation is cumbersome too, but straightforward analysis
demonstrates that it takes a very simple form 	A 	 =1/�
when � is either small or large �in the latter case, scaling
	A 	 ��−1��� holds, lending the last three term in the La-
grangian density in Eq. �15� the same order of magnitude�.

To obtain a closed-form Lagrangian for the nonstationary
�but slowly varying� amplitude field A�y , t� in the attractive
model, one should express � in Eq. �15� in terms of 	A	, using
relation �16�. This will lead, in the general case, to a
messy result; however, the abovementioned simplest ap-

FIG. 12. �Color online� Snap-
shots of the perturbed annular gap
solitons from Fig. 11�c� taken at
times t=28.75, 30.50, 32.25,
34.00 and set in the clockwise di-
rection, starting from the top left
panel. Scales along the axes are
the same as in the top left panel.

FIG. 13. Time evolution �in the y=0 cross section� of 	u�x ,y , t�	2
of a perturbed annular gap soliton with l=0 of the onsite symmetric
type, in the repulsive model �=−1, with �=10. All solitons of this
type �with l=0� are found to be stable.
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proximation �=1/ 	A	, which replaces Eq. �16�, yields a
tractable expression

Leff = 2�
−�

+�

dy�i�At�A*

A
− At

*� A

A*� +
4

3
	A	3

−
I

2
� �Ay

*�2

A* � A

A* +
Ay

2

A
�A*

A
�− �2 + I�

	Ay	2

	A	
+ 2�	A	�

�17�

�the last term in the Lagrangian density should be dropped if
� is small; if, on the contrary, � is large, the term is obtained
within the framework of the above scaling, that assumes
small �, hence sinh������� in Eq. �15��. Finally, Lagrang-
ian �17� gives rise to the following Euler-Lagrange equation,
�S /�A*=0:

iÃt + �2 + I�Ãyy − �1 +
3I

4
� Ãy

2

Ã
+ I� Ã

Ã*
Ãyy

* �
� +

	Ãy	2

2Ã*
−

3

4

�Ãy
*�2Ã

�Ã*�2
� + 2	Ã	2Ã = 0, �18�

where the transformation Ã�y , t�
A�y , t�ei�t was used to
eliminate a linear term in the equation generated by the last
term in Lagrangian �17�. Equation �18� with I=0 also ap-
pears in connection with a model describing the propagation
of surface waves on a plasma layer with a sharp boundary
�36�.

Stationary solutions to Eq. �18� with chemical potential �

are looked for in the ordinary form Ã�y , t�=e−i�tB�y�, with
B�y� satisfying equation

�1 + I��2
d2B

dy2 −
1

B
�dB

dy
�2� + 2B3 + �B = 0, �19�

which can be derived from the respective Hamiltonian
H= �2/3�B3+�B+ �1+ I��dB /dy�2 /B. Setting H=0, one ob-
tains a family of soliton solutions to Eq. �19�, for any �

0:

Bsol�y� =�−
3�

2
sech��−

�

1 + I
y� . �20�

For H
0 and �
0, a family of periodic cnoidal-wave
solutions to Eq. �19� is obtained in the form of

Bcn�y� =
B0B1

B1 + �B0 − B1�cn2��B0�B1 + 	B2	�
6�1 + I�

y,q� , �21�

where cn�z ,q� is the Jacobi’s elliptic cosine, with modulus

q =�B0 − B1

B0

	B2	
B1 + 	B2	


 1, �22�

and B2
0
B1
B0 are three roots of equation �2/3�B3

+�B−H=0. Solutions �21� exist, for given �
0, in a region
of 0�−H� ��2/3� 	�	3/2; as said above, the limit of H=0
corresponds to soliton �20�, while the opposite limit
H=−��2/3� 	�	3/2, corresponds to a uniform CW
�continuous-wave� solution, with

B0 = B1 
 B�y� = �	�	/2, B2 = − �2	�	 . �23�

Cnoidal solutions on the ring of radius r0 must satisfy
the corresponding periodic boundary conditions �BCs�,
Ã�y , t�= Ã�y+2�r0 , t� �for the ordinary 1D NLS equations
with repulsion and attraction, analytical solutions satisfying
the periodic bcs were studied in Refs. �37,38�, respectively�.
Accordingly, parameter H in solutions �21�, �22� is not a
continuously varying one, but rather takes discrete values
selected by matching the BC to the periodicity of cn2,

�r0

n
=� 6�1 + I�

B0�B1 + 	B2	�
K�q� , �24�

where K is the complete elliptic integral, and n is an arbitrary
integer.

Note that Eq. �18� features the Galilean invariance: if

Ã�y , t� is a solution, then its counterpart in the form of a
solution moving at an arbitrary velocity v is

FIG. 14. �Color online� Left panel: An example of a stable annular gap soliton �with l=0� in the repulsive model with �=3. The center
of the soliton is located in a remote trough, around r0=5�. The norm and chemical potential of this soliton are N=344.3 and �=0.78. Right
panel: A stable configuration formed by two azimuthal dark solitons created on top of an annular gap soliton shown in the left panel. This
state has norm N=330.6 and chemical potential �=0.80.
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Ãc�y,t� = Ã�y − vt�exp� i

4
vy −

i

2
v2t� , �25�

hence one can boost solitons �20� and cnoidal waves �21� to
a �formally� arbitrary velocity by means of transformation
�25�. In fact, the velocity is not arbitrary because the factor
exp�ivy /4� also must satisfy the periodic BC, which leads to
the velocity-quantization condition v=4n /r0, with
n=0, ±1, ±2, . . ..

B. Modulational instability of the uniform ring soliton in the
model with attraction

In the model with attraction ��= +1�, the existence of
uniform ring-shaped solitons trapped in annular troughs of
large radii is obvious, while a nontrivial issue is a possibility
of finding a stability region for such solutions. In terms of
Eq. �18�, the ring soliton is represented by a continuous-
wave �CW� solution with a constant amplitude B0, which
was mentioned above as a limit case of the cnoidal solution
family, with �=−2B0

2.
It is well known that, while all CW solutions of NLS-like

equations with attraction are modulationally unstable in
the infinite domain, periodic bcs may stabilize them if
the CW amplitude is smaller than a certain critical value.
This argument suggests a possibility to find a stability region
for the uniform ring solitons in the present model with
attraction.

A standard analysis of the MI assumes a perturbation of
the CW solution

Ã�y,t� = �B0 + B1�y,t��exp�2iB0
2t + i�1�y,t�� ,

with infinitesimal amplitude and phase perturbations B1 and
�1. Eigenmodes of the perturbations may be looked in the
form proportional to exp�ipy+�t�, where p is an arbitrary

FIG. 15. �Color online� �a� An unstable ring-shaped soliton in
the attractive model with �=2, trapped in a circular trough around
r0=6� �the soliton was found by means of the imaginary-time in-
tegration�. The amplitude of this soliton is 1.8, and its chemical
potential and norm are �=−2.3 and N=420 �the analytical approxi-
mation �28� predicts N=426 in this case�. The modulational insta-
bility �MI� of this axisymmetric state is correctly predicted by Eq.
�29�. �b� Development of the MI, triggered by a small azimuthal
perturbation, �u=0.02 cos�6��exp�−�r−r0�2 /2�. The evolution is
shown in terms of the amplitude, 	u�y , t�	, taken along circumfer-
ence y=r0�, with r0=6� and � running from 0 to � �due to the
symmetry, only half of the circle is shown�. �c� The field profile
formed at time t=5, demonstrating the emergence of a regular
necklace-shaped pattern.

FIG. 16. �Color online� A stable necklace pattern composed of
four strongly localized solitons in the attractive model with �=2,
trapped
in a circular trough around r0=5�. The norm of each soliton is
N=2�, with the phase difference of � between adjacent ones.
The radial lattice is embedded in an integration domain of size
16��16�.

FIG. 17. �Color online� A stable ring-shaped soliton featuring
weak azimuthal modulation, in the model with attraction and strong
radial lattice ��=10�. The solution’s norm and chemical potential
are N=7.2 and �=−5.7.
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real wavenumber, and � is the corresponding instability
growth rate. Straightforward calculations demonstrate that
the CW solution to Eq. �18� is subject to the MI under
condition

p2�2B0
2 − �1 + I�p2� � 0. �26�

In the annular system that we are dealing with, p is sub-
jected to the geometric quantization, the same way as above,
i.e., p=n /r0 with integer n. Therefore, condition �26� with
lowest 	n 	 =1 is not satisfied, giving one a chance to make
the CW solution modulationally stable, under the condition

2B0
2r0

2 � 1 + I . �27�

In a final form, this stability condition may be expressed
in terms of the full norm of the axisymmetric ring soliton.
Substituting ansatz �13� in Eq. �5�, and making use of the
assumptions adopted above, one obtains N�8�r0�B0

2. Fur-
ther, substituting here the above approximation, �=1/B0,
yields

N = 8�r0B0. �28�

With regard to this relation, stability condition �27� amounts
to a limitation on N:

N 
 Nthr = 4�2�1 + I�� � 22.55. �29�

A natural way to look at these stability conditions is to
consider a situation with gradually increasing N �or B0�. The

azimuthally uniform ring solution will loose its stability
when the amplitude �or norm� attains the critical value de-
fined by Eq. �27� �or by Eq. �29��. One may expect that the
onset of the MI gives rise to a bifurcation, which creates
stable azimuthally modulated solutions, with a modulation
depth scaling as �N−Nthr for 0
 �N−Nthr� /Nthr�1. Alterna-
tively, one may fix the CW amplitude B0 and gradually in-
crease the trough’s radius r0; the loss of the CW stability and
emergence of the modulated solutions should occur when r0
attains a critical value following from Eq. �27�,

�r0�cr = ��1 + I�/2B0
−1. �30�

In fact, the modulated states generated by the onset of the
MI should be nothing else but the stationary cnoidal wave
given by Eqs. �21� and �22�. Indeed, with regard to Eq. �23�
and the fact that K�0�=� /2, it follows from matching con-
dition �24� that, with the increase of r0 for fixed B0, the
cnoidal-wave solution appears, with an infinitely small
modulation depth, at r0= �r0�cr, where the critical value �r0�cr

is precisely the same as defined by the onset of the MI �i.e.,
given by Eq. �30��.

A defect of the above approximate analysis is that, with
regard to relation A0=1/�, stability condition �29� may be
cast in the form of � /r0��2/ �1+ I��1.1, which does not
comply with the underlying low-curvature assumption
�0�r0. This fact makes the existence of modulationally
stable ring-shaped solitons in the present model with attrac-

FIG. 18. �Color online� A
stable strongly localized soliton in
the attractive model, with norm
N=9.42, trapped in the circular
trough around r0=5�, was set in
motion in the clockwise direction
with velocity v=1. As illustrated
by the sequence of snapshots, the
circular motion in the trough con-
tinues indefinitely long without
any visible loss.
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tion doubtful �note that the linear approximation does not
suggest the existence of such stable states either, as the radi-
ally periodic potential does not support localized states in the
respective linear Schrödinger equation�. In direct simulations
of Eq. �1� with �= +1, we were unable to find modulation-
ally stable azimuthally uniform nonlinear states. However,
stable azimuthally modulated states, similar to those pre-
dicted above in the form of Eq. �21�, have been found
indeed, as reported below in Sec. VI B.

V. ANNULAR GAP SOLITONS

In this section we address the central issue concerning the
nonlinear dynamics of matter waves in the radially periodic
potential given by Eq. �2�, viz., the bandgap spectrum of the
model and a possibility of the existence of annular gap soli-
tons �in both the attractive and repulsive models, �= �1�,
with their centers located in circular troughs, far enough
from the center. Thus, we consider the following 2D GPE
�recall we adopt the normalization corresponding to k=1 in
Eq. �2��:

iut = − � �2

�r2 +
1

r

�

�r
+

1

r2

�2

��2�u − � cos�2r�u − �	u	2u .

�31�

We look for ring-shaped solutions to Eq. �31� as

u�r,�,t� = ��r�e−i�t+il�, �32�

where l=0,1 ,2 , . . ., is the vorticity of the radial soliton. Real
function ��r� is to be found from equation

d2�

dr2 +
1

r

d�

dr
+ �� + � cos�2r��� + ���2 −

l2

r2�� = 0.

By dint of the known transformation ��r�
r−1/2U�r�, this
equation is reduced to an effective 1D eigenvalue problem,
based on the following equation:

d2U

dr2 + �� + � cos�2r� + ��
U2

r
−

l2 + 1/4

r2 ��U = 0. �33�

In the limit of r→�, the linearized version of Eq. �33� co-
incides with the linear Mathieu equation, with its well-
known bandgap structure. However, the part of the spectrum
associated with excitations localized at finite r may be
strongly affected by the centrifugal barrier present in Eq.
�33�.

To investigate the band structure and gap solitons of Eq.
�33�, we used a self-consistent method developed in Ref.
�39�. Stability of gap solitons obtained by means of this
method was then tested, using the solitons as initial condi-
tions for simulations of Eq. �31� in real time. In Fig. 8, we
depict lower parts of the spectrum of energy eigenvalues for
axisymmetric states, as found from the effective nonlinear
stationary equation, Eq. �33�, with the attractive and repul-

FIG. 19. �Color online� If the
same soliton as in Fig. 18 �with
initial norm N=9.42� is set in mo-
tion with a greater velocity v=3,
the centrifugal force gives rise to
the underbarrier leakage of atoms
into outer circular troughs. As il-
lustrated by the sequence of snap-
shots, the decaying soliton cannot
preserve its shape. The norm re-
maining within the given radial
channel at t=400 is Nfinal�0.5,
i.e., �5% of the initial value.
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sive interactions. In either case, a series of discrete eigenval-
ues �labeled as �a�– �d� in Fig. 8� correspond to localized
states. The discrete eigenvalues are located in gaps between
bands determined by the linear spectrum of Eq. �33�, i.e., the
respective localized solutions are the annular gap solitons
which we seek for. The wave functions of the states corre-
sponding to the discrete eigenvalues labeled in Fig. 8 are
displayed in Fig. 9.

Symmetries of these localized states are similar to those
of intrinsic localized modes in 1D nonlinear lattices and gap
solitons in the 1D GPE with a periodic potential. Adopting
the respective terminology, we will call them the onsite sym-
metric �Figs. 9�a� and 9�c�� and onsite antisymmetric �Figs.
9�b� and 9�d�� annular gap solitons �of course, the respective
symmetry and antisymmetry are approximate ones, being
violated by the curvature of the 2D model, i.e., the centrifu-
gal potential in Eq. �33��. Three-dimensional plots of these
states are presented in Fig. 10. Notice that the antisymmetric
state in the attractive model is composed of two matter-wave
rings �with a phase shift of � between them� trapped in one
circular trough of the potential, while its counterpart in the
repulsive models feature many annular layers. The latter gap-
soliton type is akin to antisymmetric “subfundamental” soli-
tons �named so because their norm is smaller than the norm
of a fundamental gap soliton found at the same value of the
chemical potential�, the existence of which in the second
bandgap of the 1D repulsive model was reported in Ref.
�40�. Actually, all the subfundamental solitons in the 1D

model are unstable; the same will be demonstrated below for
their counterparts in the radial model.

Stability of the annular gap solitons has been checked
by direct simulations of Eq. �31�. The results are reported
in Fig. 11, in the y=0 cross section of the evolution picture.
As shown in panels �a�, �b�, all the ring-shaped gap solitons
are unstable in the attractive model, with the instability de-
veloping as the modulational instability �MI� of the
originally uniform annular profile, which leads to its frag-
mentation into several strongly localized �spot-shaped� soli-
tons �they are considered below�. This instability is observed
independently of the soliton’s angular momentum.

In the repulsive model, Fig. 11�d� shows the annular gap
solitons of the onsite antisymmetric type, which exist in the
second bandgap �see Fig. 9�d��, are always unstable too,
similar to the abovementioned “subfundamental” gap soli-
tons in the 1D model with repulsion, which can never be
stable �40�. The gap solitons of the onsite symmetric type in
the repulsive model may be stable in the first bandgap, de-
pending on their angular momentum l. The annular solitons
with l�0 are weakly unstable against azimuthal modulations
of the ring’s profile, as shown in Fig. 11�c�. This weak
instability does not lead to fragmentation of the ring, unlike
the situation in the attractive model �see Fig. 11�a��. Instead,
the small azimuthal perturbation runs along the soliton’s
crest, thus rendering the entire structure rotating, see Fig.
11�c�. This slightly disturbed rotating annular soliton persists
indefinitely long. The rotation of the perturbed annular gap

FIG. 20. �Color online� Colli-
sion between two solitons with in-
dividual norms N=2.5� and zero
phase difference, in the circular
trough of radius r0=5�. One of
the solitons is set in motion �at x
=5� ,y=0� at t=0 with speed v
=3 in the clockwise direction,
while the second one �at x=0,y=
−5�� stays quiescent. The norm
remaining within the given circu-
lar channel at t=10 is Nfinal

=12.75, i.e., 81% of the initial
value. The soliton which was
originally at rest loses less norm
than the moving one.
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soliton of the latter type, and its effective stability, are addi-
tionally illustrated by means of snapshots displayed in Fig.
12.

For zero angular momentum �l=0�, the annular gap
solitons of the onsite symmetric type are completely stable in
the repulsive model, as shown in Fig. 13. Other types of
ring-shaped gap solitons, resembling �in the radial direction�
intersite symmetric and asymmetric intrinsic localized modes

of 1D nonlinear lattices are possible too, but they turn out to
be even more unstable than the onsite antisymmetric ones, in
both attractive and repulsive models. In the next section, we
continue the investigation of annular gap solitons of the
onsite symmetric type.

VI. FURTHER NUMERICAL INVESTIGATION OF RING-
SHAPED STATES

A. The repulsive model

In this section, we aim to adduce additional numerical
results, which illustrate and extend general conclusions about
the annular solitons and their stability made in the two pre-
ceding sections. First, it is relevant to check if gap solitons of
the onsite symmetric type with l=0 can be found and remain
stable in the repulsive model, being trapped in troughs lo-
cated much farther from the center than in the examples con-
sidered above �accordingly, the soliton’s norm will be much
larger too�, especially if the trapping potential is not as
strong as above �recall that �=10 in Fig. 13�.

The existence and stability of the annular gap solitons
in this more general case are borne out by numerical results,
as illustrated by Fig. 14. This figure shows a heavy ring
soliton �with N=344.3, cf. N=5� in Fig. 13� of a large
radius r0=5� �cf. r0=� in Fig. 13�, in a relatively shallow
radial potential �with �=3, cf. �=10 in Fig. 13�. In the re-
pulsive model, a stable ring �i.e., annual gap soliton� may
additionally carry, on its crest, pairs of azimuthal dark soli-
tons. An example of such a stable pattern is displayed in Fig.
14 �it resembles the dipole-mode ring solitons recently found
in the model with repulsion and Bessel lattice in Ref. �16��.
These solutions are found from simulations of Eq. �31� in
real time, with absorbers set at r=8� and r=0.

B. The attractive model

In Sec. IV, the MI of axisymmetric annular states in the
attractive model was predicted in an analytical form. An is-
sue of straightforward interest is an outcome of the develop-

FIG. 21. �Color online� An example of collapse due to the
head-on collision of two in-phase solitons in the attractive model.
Both solitons were set in motion with relatively small velocities v
= ±1 in one circular channel �of radius r0=5��. Upper panels: den-
sity plots at t=0 and at the collapse moment �t=12�. Lower panel:
evolution of the density profiles in the cross section along the cir-
cumference of the potential trough. As in Fig. 20, the initial norm of
each soliton is N=2.5�.

FIG. 22. Collision of two solitons for the same parameters as in
Fig. 21, but with phase difference � between them. Solitons bounce
at �=180° and �=0°. Eventually, the solitons merge into a single
one, avoiding collapse.
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ment of the MI. A typical example of that is presented in Fig.
15. It is observed that the system tends to form a stationary
necklacelike pattern composed of six peaks towering above
the remaining quasiuniform background. Each peak may be
interpreted as a strongly localized soliton.

Another typical example of a stable necklace configura-
tion is displayed in Fig. 16, for the same radial potential as in
Fig. 15 �with �=2�. It is generated not from an unstable
axisymmetric ring, but rather from an initial set of four
Gaussian pulses, with phase shifts � between them, by the
integration of Eq. �1� in imaginary time.

Plausibly stable static rings with a density modulation in
the azimuthal direction, corresponding to cnoidal-wave ana-
lytical solutions �21�, were also predicted in the above analy-
sis of the attractive model. Stable modulated patterns of this
type were indeed found in numerical simulations, provided
that the radial potential is strong enough, see an example in
Fig. 17. In fact, it was generated as an outcome of the evo-
lution of a modulationally unstable axisymmetric ring with
the same norm. A transition between weakly and deeply

modulated �necklacelike� stable azimuthal patterns, such as
ones displayed, respectively, in Figs. 17, 15�c�, and 16 occurs
with the increase of the norm.

VII. ROTATIONAL DYNAMICS OF SOLITONS AND
COLLISIONS BETWEEN THEM

A. Stability of rotary solitons

Strongly localized solitary waves of the attractive BEC,
self-trapped in a large-radius annular potential channel, such
as individual solitons in Fig. 16, can freely move in the chan-
nel �circular trough�. If set in motion with a sufficiently small
velocity, the soliton can circulate in the trough indefinitely
long, preserving its integrity, as shown in Fig. 18.

However, if the circulation speed is too large, the centrifu-
gal force acting on the soliton can cause the matter to tunnel
into adjacent radial troughs. The loss of the norm �number of
atoms� caused by the centrifugal tunneling eventually brings
the soliton’s norm below a threshold value necessary for its
existence, which leads to disintegration of the soliton, see
Fig. 19.

If the radial potential is weak, and the soliton is strongly
self-trapped �with a sufficiently large norm�, the centrifugal
force can pull the soliton as a whole away from the

FIG. 23. �Color online� A sequence of snapshots for the collision
between in-phase solitons with individual norms N=2�, moving at
velocities v= ±1 in adjacent circular troughs �around r0=5� and
r0=4�� of the radial lattice with �=2. The solitons survive the
collision, and remain localized, although the collision is inelastic,
giving rise to radiation loss.

FIG. 24. �Color online� The same as in Fig. 23, but for solitons
with smaller norms N=1.7� launched to move at velocities v
= ±0.2.
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center, across the radial lattice. In that case �not shown here�,
the soliton also suffers the radiation loss, and eventually
disintegrates.

B. Collisions between solitons

The present model offers unique possibilities for explor-
ing interactions and collisions between matter-wave solitons,
as the dynamics in circular channels is free of external per-
turbations, which are always present in previously reported
settings �in the form of the weak longitudinal trap intended
to keep the solitons within a finite spatial domain�. The same
advantage is offered by setups with toroidal traps �41,42�.
However, sideline �tangential� collisions, which are possible
between solitons moving in adjacent potential troughs of the
radial lattice, have no counterparts in the latter case.

In head-on collisions of solitons in the attractive model
�with both solitons trapped in one circular channel�, two
competing processes play major roles. The first is the non-
linear self-focusing, which may give rise to intrinsic collapse
of a heavy “lump” temporarily formed by the colliding soli-
tons, and the other is the interference due to coherence of the
matter-wave solitons �10,30�. The interference pattern, fea-
turing alternating regions of high and low density, can sup-
press the collapse. The predominance of either mechanism
depends on the time of interaction. If it is small �i.e., the
collision speed is large�, solitons can pass through each other
without collapse �although with conspicuous loss, see below,
hence the collision cannot be termed quasielastic�, even if
their total norm exceeds the collapse threshold. On the con-
trary, slow collisions lead to the onset of collapse.

Figure 20 presents an example of a relatively fast colli-
sion between in-phase �mutually attracting� solitons. At the
moment of the full overlap between them, t=4.3, the inter-
ference fringes are evident. They are seen too in the cross
section along the circumference of the channel, in the lower
right panel of Fig. 20. Although the total norm of the collid-
ing solitons �Ntot=14.9� is above the collapse threshold, and
the collision time ��t�0.5� is larger than the collapse time
�which is estimated as tcollapse�1/Ntot�, the solitons separate
without collapse. Nevertheless, the collision is essentially in-
elastic, the loss being additionally enhanced by the matter
leakage under the action of the centrifugal force.

On the other hand, Fig. 21 shows that in-phase solitons
colliding at a sufficiently small velocity merge together and
eventually blow up due to the collapse. Solitons with a phase
shift of �, colliding in one circular potential trough, bounce
from each other due to repulsion between them. Then, re-
peated bouncing collisions are observed, which is similar to
the dynamics in the Bessel lattice �14�, as well as in a
quasi-1D OL, supplemented by a weak longitudinal trap
�10�. However, in contrast to those cases, we have observed
that many collisions in the circular trough gradually wash out
the phase coherence between the solitons. As a result, the
solitons cease to repel each other, and a clear interference
pattern disappears. Eventually, the originally repelling soli-
tons merge together, shedding the excessive norm away, as
shown in Fig. 22. The collapse does not occur in this case, as
the loss pushes the norm of the finally established single
soliton below the collapse threshold.

The present setting makes it also possible to investigate
tangential collisions between solitons moving in adjacent
channels of the radial potential. The result is that two in-
phase solitons tend to merge, due to the flow of matter be-
tween them �a similar trend was observed in Ref. �10�, in
simulations of tangential collisions in the 2D model with a
quasi-1D lattice�. Nevertheless, the solitons may avoid the
merger and separate, if the collision time is small due to a
large relative velocity, as shown in Fig. 23.

On the other hand, if each soliton is a loosely bound one
�i.e., its norm is small and/or the radial lattice is weak�, slow
lateral collisions give rise to merger of the solitons into one.
Collapse is avoided in this case, due to shedding off exces-
sive norm with linear waves, as demonstrated in Fig. 24.

VIII. CONCLUSIONS

In this work, we have proposed a new setting to explore
two-dimensional �2D� localized states in self-attractive and
repulsive BECs, in the form of a periodic radial optical lat-
tice. A crucial difference from previously studied 2D models
with Bessel lattices is the fact that the linear limit of the
present model supports no localized states, hence all local-
ized states in it are “true solitons,” impossible without the
nonlinearity. In addition to the BEC, the model may also
apply to spatial solitons �beams� in photonic crystal fibers
with a circular intrinsic structure.

The existence of solitons in this setting was demonstrated
by means of different variants of the variational approxima-
tion, and in direct numerical simulations. We have investi-
gated two distinct classes of localized states existing in
the model, viz., ones trapped in the central potential well,
and in remote circular potential troughs. In each class, a new
soliton species, namely, stable radial gap solitons, has been
identified in the model with self-repulsion �in addition, the
radial gap soliton trapped in a circular trough can carry stable
pairs of azimuthal dark solitons on its crest�. The solitons
trapped in the central potential well are stable, in the case of
attraction and repulsion alike.

Annular gap solitons in the repulsive model, trapped in
circular potential troughs far from the center, are completely
stable if they carry zero angular momentum, l=0. The same
solitons with l�0 develop a small-amplitude azimuthal
modulation, and persist indefinitely long in the form of
rotating weakly modulated ring patterns.

In the attractive model, we have investigated ring-shaped
patterns delocalized in the azimuthal direction, and strongly
localized azimuthal solitons �including moving ones�, both
trapped in a remote potential circular trough. Solutions of
these types are described by an effective 1D equation supple-
mented by periodic boundary conditions �it is a nonpolyno-
mial NLS equation with the coordinate running along the
circumference�. Using that equation, a threshold of the azi-
muthal modulational instability �MI� of axisymmetric ring-
shaped states was predicted, and exact cnoidal-wave solu-
tions, generated by the MI-induced bifurcation just above the
MI threshold, were found. Azimuthal solitons were also
found as solutions of the same equation. The existence of
stable weakly modulated ring-shaped states was corroborated

BAIZAKOV, MALOMED, AND SALERNO PHYSICAL REVIEW E 74, 066615 �2006�

066615-16



by direct simulations. In a more general case, the develop-
ment of the MI leads to the establishment of stable necklace
patterns, composed of several �for instance, four or six�
strongly localized peaks.

Dynamics of completely localized solitons in the attrac-
tive model circulating in the annular potential troughs was
investigated too. The solitons with sufficiently small veloci-
ties remain stable indefinitely long, while high velocities
give rise to leakage of matter into the adjacent �more remote�
trough under the action of the centrifugal force, which even-
tually destroys the soliton. We have also investigated colli-
sions between solitary waves running in the same or adjacent
circular channels. Head-on collisions of in-phase solitons in
one trough lead to collapse; �-out of phase solitons bounce
from each other many times, but gradually lose the mutual

coherence, and eventually merge into a single soliton, avoid-
ing collapse by shedding the overcritical norm. In-phase soli-
tons colliding in adjacent channels may also merge into a
single soliton.
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